Alexa Fluor® 594 anti-Nuclear Pore Complex Proteins
カートを見る または ショッピングを続ける
説明
Nuclear pores are large protein complexes that cross the nuclear envelope. The proteins that make up the nuclear pore complex are known as nucleoporins. About half of the nucleoporins typically contain solenoid protein domains—either an alpha solenoid or a beta-propeller fold, or in some cases both as separate structural domains. Each NPC contains at least 456 individual protein molecules and is composed of 30 distinct proteins (nucleoporins). The other half show structural characteristics typical of 'natively unfolded' or intrinsically disordered proteins, i.e. they are highly flexible proteins that lack ordered secondary structure. These disordered proteins are the FG nucleoporins, so called because their amino-acid sequence contains many phenylalanine—glycine repeats. Nuclear pore complexes allow the transport of molecules across the nuclear envelope. This transport includes RNA and ribosomal proteins moving from nucleus to the cytoplasm and proteins (such as DNA polymerase and lamins), carbohydrates, signaling molecules and lipids moving into the nucleus. Although smaller molecules simply diffuse through the pores, larger molecules may be recognized by specific signal sequences and then be diffused with the help of nucleoporins into or out of the nucleus.. Each of the eight protein subunits surrounding the actual pore (the outer ring) projects a spoke-shaped protein over the pore channel. Nucleoporin p62 (p62) protein remains associated with the nuclear pore complex-lamina fraction. p62 is synthesized as a soluble cytoplasmic precursor of 61 kDa followed by modification that involve addition of N-acetylglucosamine residues, followed by association with other complex proteins.The protein encoded by this gene is a member of the FG-repeat containing nucleoporins and is localized to the nuclear pore central plug. This protein associates with the importin alpha/beta complex which is involved in the import of proteins containing nuclear localization signals. Multiple transcript variants of this gene encode a single protein isoform. P62 is a serine/threonine rich protein of ~520 amino acids, with tetrapeptide repeats on the amino terminus and a series of alpha-helical regions with hydrophobic heptad repeats. P62 assembles into a complex containing 3 addition proteins, p60, p54 and p45 forming the p62 complex of ~235 kDa. Glycosylation appears to be involved in the assembly and disassembly of p62 into higher order complexes, and a serine/threonine rich linker region between Ser270 to Thr294 appear to be regulatory. The p62 complex is localized to both the nucleoplasmic and cytoplasmic sides of the pore complex and the relative diameter of p62 complex relative to the nuclear pore complex suggests it interacts in pore gating. Antibodies to p62 complex are involved in 1 or more autoimmune diseases. P62 glycosylation is increased in diabetes. p62 is also more frequent in Stage IV primary biliary cirrhosis and is prognostic for severe disease. Reduced p62 production has been linked to Alzheimer's disease. It is thought oxidative damage of the p62 promoter is correlated with AD and other neurodegenerative disorders.
PRODUCT DETAILS
Clone: MAb414
Antibody Type: Monoclonal
Reactivity: Human, Mouse, Rat
Format: Alexa Fluor 594
Host: Mouse
Isotype: IgG1
Applications: ICC - Quality tested
Regulatory Status: RUO
Note to Purchaser: This product is manufactured and supplied by BioLegend, Inc. under an agreement between BioLegend, Inc. and Cytek Biosciences, Inc. Information related to this product is provided by BioLegend, Inc.