Shopping Cart

Request a Demo or a Quote

Your contact information:
Product Information:

Boosting NAD Level Suppresses Inflammatory Activation of PBMCs in Heart Failure


Background:While mitochondria play an important role in innate immunity, the relationship between mitochondrial dysfunction and inflammation in heart failure (HF) is poorly understood. In this study we aimed to investigate the mechanistic link between mitochondrial dysfunction and inflammatory activation in peripheral blood mononuclear cells (PBMCs), and the potential anti-inflammatory effect of boosting NAD level.Methods:We compared the PBMC mitochondrial respiration of 19 hospitalized Stage D HF patients with 19 healthy participants. We then created an in vitro model of sterile inflammation by treating healthy PBMC with MitoDAMP (Mitochondrial Damage-Associated Molecular Patterns) isolated from human heart tissue. Lastly, we enrolled Stage D HF patients and sampled their blood before and after taking 5-9 days of oral nicotinamide riboside, an NAD precursor.Results:We demonstrated that HF is associated with both reduced respiratory capacity and elevated proinflammatory cytokine gene expressions. In our in vitro model, MitoDAMP-treated PBMCs secreted IL-6 that impaired mitochondrial respiration by reducing Complex I activity. Last, oral NR administration enhanced PBMC respiration and reduced proinflammatory cytokine gene expression in 4 HF subjects.Conclusion:These findings suggest that systemic inflammation in HF patients is causally linked to mitochondrial function of the PBMC. Increasing NAD levels may have the potential to improve mitochondrial respiration and attenuate proinflammatory activation of PBMC in HF. FundingThis study is funded by NIH R21 HL126209 (to RT and KO), NIH R01 HL144937 (to KO and RT) and University of Washington ITHS Catalyst Award (to DDW). Both BZ (18POST33990352) and DDW (18POST34030098) are funded by the AHA Postdoctoral Fellowships.

Read the Full Article here.